Abstract Submitted for the APR07 Meeting of The American Physical Society

Discrimination of Rare π^+ and μ^+ Decays at Rest Using Artificial Neural Networks EMIL FRLEŽ, University of Virginia, PEN COLLABORATION — PEN, a new experiment aiming to measure the $\pi^+ \to e^+ \nu$ decay branching ratio (π_{e2}) with a relative uncertainty of $\sim 5 \cdot 10^{-4}$ is being mounted at the Paul Scherrer Institute ring accelerator. The PIBETA detector was upgraded with new active degrader and fast active target detectors. Low-momentum π^+ beam tunes in the range 72-80 MeV/c were developed producing stopping rates of up to 20 km/s. Beam detector PMT waveforms were recorded with a 2 GHz/10 bit Acqiris digitizer. The "system waveform functions" for the stopping π^+ 's and μ^+ 's and decaying e^+ 's were determined from a set of clean Michel events. The $\pi^+ \to e^+ \nu$ events were distinguished from the copious Michel background using artificial neural network analysis.

Emil Frlež University of Virginia

Date submitted: 12 Jan 2007 Electronic form version 1.4