Abstract Submitted for the APR07 Meeting of The American Physical Society

The π^0 Lifetime: Experimental Probe of the QCD Axial Anomaly DUSTIN MCNULTY¹, MIT/Jefferson Lab — The $\pi^0 \to \gamma\gamma$ decay rate is a fundamental prediction of QCD which gives insight into one of its most profound symmetry issues—namely, the Axial or Chiral Anomaly. It is this anomalous symmetry-breaking mechanism by which the $\pi^0 \to \gamma\gamma$ decay channel primarily proceeds, and thus a measure of its rate or partial width, $\Gamma_{\gamma\gamma}$, represents a direct probe of the anomaly plus chiral corrections. The PrimEx Collaboration at Jefferson Lab has extracted $\Gamma_{\gamma\gamma}$ from precision measurements of π^0 photo-production cross sections using their Primakoff components. Measurements were made using 5% X_0 nuclear targets of ^{12}C and ^{208}Pb with incident photons between 4.9 and 5.5 GeV tagged by the Hall B tagger facility. The π^0 decay photons were detected by a specially constructed high resolution hybrid calorimeter (HYCAL). In this presentation, recent preliminary results from the PrimEx measurement will be given with emphasis on the cross section analysis and lifetime extraction.

¹For the PrimEx Collaboration

Dustin McNulty MIT/Jefferson Lab

Date submitted: 16 Jan 2007 Electronic form version 1.4