Abstract Submitted for the APR08 Meeting of The American Physical Society

RF spin resonance strength for stored polarized deuterons. M.A. LEONOVA, A.D. KRISCH, V.S. MOROZOV, R.S. RAYMOND, D.W. SIVERS, V.K. WONG, J.M. WILLIAMS, Univ. of Michigan, Ann Arbor, MI 48109-1040, A. GARISHVILI, R. GEBEL, A. LEHRACH, B. LORENTZ, R. MAIER, D. PRA-SUHN, H. STOCKHORST, D. WELSCH, Forschungszentrum Jülich, IKP, D-52425 Jülich, F. HINTERBERGER, K. ULBRICH, Helmholtz Inst., Univ. Bonn, D-53115 Bonn, A. SCHNASE, JAEA/J-PARC, Tokai-Mura, Ibaraki 319-1195, Japan, A.M. KONDRATENKO, GOO Zaryad Novosibirsk, 630058 Russia, E.J. STEPHENSON, IUCF, Indiana Univ., Bloomington, IN 47408-0768, N.P.M. BRANTJES, C.J.G. ONDERWATER, M. DA SILVA, Univ. of Groningen, the Netherlands — We studied the ratio of the measured to predicted rf spin resonance strengths $\varepsilon_{FS}/^*\varepsilon_{Bdl}$ for an rf dipole and an rf solenoid using 1.85 GeV/c vertically polarized deuterons at COSY. We measured ε_{FS} by fitting spin-flipping data to the Froissart-Stora equation, and we calculated each ε_{Bdl} from each rf magnet's $\int Bdl$. We found no dependence on the beam's momentum spread or the rf frequency sweep range for either the rf dipole or solenoid. We saw an enhancement of $\varepsilon_{FS}/*\varepsilon_{Bdl}$ near a 1storder intrinsic resonance for the rf dipole, but no enhancement for the rf solenoid. Except near the intrinsic resonance, the deuteron's ε_{FS} was very near $*\varepsilon_{Bdl}$ for the rf solenoid, but was about 7 times smaller than ε_{Bdl} for the rf dipole. (Supported by the German BMBF Science Ministry.)

M.A. Leonova

Date submitted: 09 Jan 2008

Electronic form version 1.4