Abstract Submitted for the APR08 Meeting of The American Physical Society

Attempts to Manipulate the Decay Time of Radioactive Nuclei¹ B. FALLIN, B. GRABOW², W. TORNOW, Duke University / TUNL — It has been known for 20 years that electron screening strongly changes nuclear reaction cross sections at sub-Coulomb charged-particle projectile energies. The screening energy can be increased considerably if the target atoms are implanted in a metallic host and cooled to low temperature $(T \sim 10 \text{ K})$. The large screening in metals derives from the Debye plasma model applied to the quasi-free metallic electrons. If "time reversed," this model implies that the lifetime of radioactive nuclei placed in a metallic host can be manipulated by orders of magnitude. For α and β^+ decay one expects a shorter half-life, while for β^- decay and EC, a longer half-life is expected. The results of prior experiments testing this theory are controversial; about half of the published data confirm an effect, while the other half observe no effect. We will report on our experimental studies using ⁶⁴Cu and ⁶⁵Zn nuclei produced at TUNL via the 63 Cu(d,p) and 65 Cu(p,n) reactions, respectively. For 64 Cu, we detected the 511 keV annihilation γ rays and for ⁶⁵Zn the 1115.5 keV γ rays using HPGe detectors. In both cases we did not observe a half-life change outside experimental uncertainties between measurements at room temperature and those with the samples cooled to T = 12 K.

¹Supported in part by DOE, Office of NP, grant #DE-FG02-97ER41033. ²REU student, Summer 2007, TUNL, NSF grant #PHY-0552723

> Brent Fallin Duke University / TUNL

Date submitted: 16 Jan 2008

Electronic form version 1.4