Abstract Submitted
for the APR08 Meeting of
The American Physical Society

Laser-Plasma simulations of Artificial Magnetosphere formed by Giant Coronal Mass Ejections

YURI ZAKHAROV, ARNOLD PONOMARENKO, Institute of Laser Physics, Russia, KONSTANTIN VCHIVKOV, Institute of Laser Physics, WENDELL HORTON, PARRISH BRADY, University of Texas, ILP TEAM, UT TEAM — We study by the laboratory (Laser-Plasmas, LP) and numerical (3D/PIC-code) simulations a resulting state of very strong magnetopause’ (MP) compression by CME with effective energy $E_o > 10^{34}$ ergs directed to the Earth. During probable formation of such Artificial Magnetosphere (AM) with the MP stand-off at R_m up to $(2-3)R_E$, a lot of catastrophic phenomena in a space and ground networks could occur due to very high curl electric fields induced by world-wide magnetic field’s changes with a SC-rate > 50 nT/s. The laboratory models of AM (with $R_m \sim 0.1-30$ cm) were formed around high-field, 1D and 3D magnetic obstacles, overflowing by LP-blobs with E_o up to kJ and magnetized ions. The shape and internal structure of such large-scale AM at KI-1 facility of Russian team were studied by a set of B-dot magnetic probes, while a main goal of UT’ small-AM experiment was to explore a possible shock’s generation and relevant electron accelerations. A preliminary results of KI-1 experiments show that the both R_m-size and SC(E_o) of AM could be described by modified Chapman-Ferraro Scaling, while the whole SC-distribution (in equatorial plane) by well-known “Image Dipole” model of the Earth magnetosphere.

1This work is supported by CRDF Grant # RUP2-2683-NO-05.

Yuri Zakharov
Institute of Laser Physics

Date submitted: 13 Jan 2008

Electronic form version 1.4