Primordial Non-Gaussianity (fNL) in WMAP data AMIT YADAV, BENJAMIN WANDELT, University of Illinois at Urbana-Champaign — We present evidence for the detection of primordial non-Gaussianity of the local type (f_{NL}), using the temperature information of the Cosmic Microwave Background (CMB) from the WMAP 3-year data. We employ the bispectrum estimator of non-Gaussianity described in Yadav et al. 2007 which allows us to analyze the entirety of the WMAP data without an arbitrary cut-off in angular scale. Using the combined information from WMAP’s two main science channels up to $\ell_{max} = 750$ and the conservative Kp0 foreground mask we find $26.9 < f_{NL} < 146.7$ at 95% C.L., with a central value of $f_{NL} = 86.8$. This corresponds to a rejection of $f_{NL} = 0$ at more than 99.5% significance. We find that this detection is robust to variations in ℓ_{max}, frequency and masks. We conclude that the WMAP 3-year data disfavors single field slow-roll inflation.

Amit Yadav
University of Illinois at Urbana-Champaign

Date submitted: 11 Jan 2008