\begin{abstract}

\textbf{\(^{112}\text{Sn Double-Electron Capture to Excited States - A Possible Alternative to Neutrinoless Double-Beta Decay}\)} MARY KIDD, JAMES ESTERLINE, WERNER TORNOW, Duke University and TUNL — As first suggested by Winter in 1955 and re-emphasized by Georgi, Glashow and Nussinov in 1981 the double-electron capture (EEC) process on a nucleus with an excited state of the daughter at an energy that coincides with the mass difference between the parent and daughter atoms may play a decisive role in determining the properties of neutrinos. For perfect degeneracy, a substantial resonance enhancement in the capture probability is predicted, and there is no phase space left for the two-neutrino double electron capture. Here we concentrate on \(^{112}\text{Sn}\). Using the TUNL apparatus designed for double-beta decay studies to excited states we placed a 3.9 g foil of enriched (99.5\%) \(^{112}\text{Sn}\) between our two HPGe detectors. In addition, we surrounded the detectors with rods of natural tin (0.97\% of \(^{112}\text{Sn}\)), thus providing a total mass of 15.7 g of \(^{112}\text{Sn}\) for our search for the coincident detection of 1253.4 keV and 617.6 keV \(\gamma\) rays (\(0^+ \rightarrow 2^+ \rightarrow 0^+_gs\) sequence). After 60 days of counting we obtained no events in the energy region of interest. This null result corresponds to \(T_{1/2} > 1.4 \times 10^{19}\) years (90\% CL) for the \(0\nu\)EEC process. Analysis of the singles spectra, gives a half-life of \(T_{1/2} > 4.8 \times 10^{19}\) years (90\% CL) for the \(0\nu\)EEC process.

\(1\)Work supported by DOE, Office of NP, grant \#DE-FG02-97ER41033.

Mary Kidd
Duke University and TUNL

Date submitted: 14 Jan 2008

Electronic form version 1.4
\end{abstract}