Abstract Submitted for the APR08 Meeting of The American Physical Society

Neutron-Induced Partial Cross Section Measurements on Cu, Ge and Pb at $E_n = 8$ and 12 MeV for Background Radiation in $0\nu\beta\beta$ Decay Experiments E. KWAN, J.H. ESTERLINE, B. FALLIN, C.R. HOWELL, A. HUTCHESON, M.F. KIDD, A. TONCHEV, W. TORNOW, TUNL-Duke, C. AN-GELL, H. KARWOWSKI, TUNL-UNC, J. KELLEY, TUNL-NCSU, D. MEI, USD, S. HILDERBRAND, NCCU, D.B. MASTERS, Samford Univ, R.S. PEDRONI, NCATSU, G.J. WEISEL, Penn State Univ-Altoona — The search for the existence of $0\nu\beta\beta$ decay plays an important role in the uncovering of physics beyond the standard model. The detection of such decay would confirm that neutrinos are Majorana particles. The large lifetimes $(i.e., T_{1/2})^{76}$ Ge) $> 10^{25}$ y) and the corresponding long measuring times require extensive understanding of background radiation induced by neutron interactions with shielding and detector materials. For example, neutron induced γ -ray transitions in Pb and Cu and their escape peaks could interfere with the identification of the 2039 keV signature of $0\nu\beta\beta$ in the case of ⁷⁶Ge. Thus, it is necessary to determine the yields from possible background sources. The neutroninduced partial cross sections for γ -ray transitions in Cu, enriched ⁷⁶Ge, and Pb were measured at TUNL using an array of HPGe detectors at $E_n=8$ and 12 MeV. The experimental setup and preliminary results will be presented.

Supported by DOE Grants DE-FG02-97ER41033 & DE- FG02-97ER41042.

Elaine Kwan TUNL-Duke

Date submitted: 11 Jan 2008 Electronic form version 1.4