Laser driven shocks in a large magnetized plasma1 CHRISTOPH NIEMANN, CARMEN CONSTANTIN, ANDREW COLLETTE, PATRICK Pribyl, SHREEKRISHNA TRIPATHI, ERIK EVERSON, ALEXANDRE GIGLIOTTI, STEPHEN VINCENA, NATHAN KUGLAND, WALTER GEKELMAN, UCLA, RADU PRESURA, STEPHAN NEFF, CHRISTOPHER PLECHATY, UNR — We will present experiments on the interaction of an energetic laser-produced plasma with a large magnetoplasma. Laser intensities in excess of 10^{12} W/cm2 produce an ablating plasma plume with expansion velocities of several 100 km/s. Prior to the laser pulse an ambient plasma with a length of 18 m and a diameter of 50 cm is created at 2×10^{12} cm$^{-3}$ and 5 eV in an axial magnetic field of 600 G (the Large Plasma Device). We observe large amplitude Alfvén waves radiated from the laser-produced plasma.

1Work supported by the DOE and the Basic Plasma Science Facility

Christoph Niemann
UCLA

Date submitted: 11 Jan 2008