Abstract Submitted for the APR08 Meeting of The American Physical Society

Experimental Exploration of ${}^{69}Br$ and the rp-Process ${}^{68}Se$ Waiting Point¹ A.M. ROGERS^{*}, NSCL MSU, M.A. FAMIANO^{*}, M.S. WALLACE^{*}, M.-J. VAN GOETHEM*, F. DELAUNAY*, W.G. LYNCH*, M.B. TSANG*, M. MOCKO*, J. LEE*, R.T. DE SOUZA*, S. HUDAN*, L.G. SOBOTKA*, R.J. CHARITY*, J. ELSON*, S. LOBASTOV, D. SHAPIRA, D. BAZIN, A. GADE, G. VERDE^{*}, *HIRA COLLABORATION — To realistically model the rp-process, experimental data along the proton dripline are required. Of particular interest is the ${}^{68}Se$ waiting point region where proton capture is inhibited. The reaction rate for the 2p-capture process ${}^{68}Se + 2p \rightarrow {}^{70}Kr$ depends exponentially on the Q-value, which is poorly constrained. We have performed an experiment to measure Q-values of proton unbound states of nuclei, specifically ${}^{69}Br$, at the NSCL Coupled Cyclotron Facility. The experiment is designed to reconstruct the decays of proton unbound nuclei such as ${}^{69}Br$ by detecting the decay protons using the MSU High Resolution Array (HiRA) in coincidence with a heavy residue, e.g. ${}^{68}Se$, which is measured in the S800 spectrograph. Details of the experimental setup as well as preliminary experimental results will be presented.

 $^1{\rm This}$ work is supported by the National Science Foundation under Grant Nos. PHY-0606007 and PHY-9977707.

Andrew Rogers National Superconducting Cyclotron Laboratory/Michigan State University 1 Cyclotron, East Lansing, Michigan 48824-1321

Date submitted: 15 Jan 2008

Electronic form version 1.4