Applications of Radiation-Driven Blast Waves at Z

T.E. TIERNEY, R.G. WATT, G.C. IDZOREK, C.L. FRYER, D.L. PETERSON, R.R. PETERSON, H.E. TIERNEY, Los Alamos National Laboratory — Radiation-driven blast waves (BWs) occur when the wave speed of an initially diffusive, supersonic radiation wave becomes subsonic and forms a radiographically-visible, hydrodynamic shock wave. BWs have been shown to be extremely energy sensitive, a fact we exploit as a calorimetry diagnostic. Experiments that use Sandia’s Z-dynamic hohlraum as a quasi-Planckian radiation source often require accurate source energy measurements. We have used BWs as a principal diagnostic in experiments of hohlraum energy loss through diagnostic and entrance holes. We also intend to use BWs as a code validation technique for simulating the interaction between radiation-driven BWs sourced by a supernova with a companion star. We discuss experimental designs that use BWs as a diagnostic, and describe the computational and experimental uncertainties associated with BWs. This work was performed under the auspices of the Los Alamos National Laboratory for the U.S. Department of Energy.

1This work was performed under the auspices of the Los Alamos National Laboratory for the U.S. Department of Energy

Thomas Tierney
Los Alamos National Laboratory

Date submitted: 16 Jan 2008

Electronic form version 1.4