Abstract Submitted for the APR09 Meeting of The American Physical Society

Precision Measurement of the Electron/Muon Gyromagnetic Factors AYODEJI AWOBODE, University of Illinois at Urbana-Champaign — Clear, persuasive arguments are brought forward to motivate the need for highly precise measurements of the electron/muon orbital g, i.e. g_L , as a test of QED. It is demonstrated, using the data of Kusch & Foley on the measurement of $(\delta_S - 2\delta_L)$ together with the modern precise measurements of the electron δ_S ($\delta_S \equiv g_S - 2$)), that δ_L may be a small (-0.6 x 10⁻⁴), non-zero quantity, where we have assumed Russel-Saunders (LS) coupling and proposed, along with Kusch and Foley, that g_S $= 2 + \delta_S$ and $g_L = 1 + \delta_L$. Therefore, there is probable evidence from experimental data that g_L is not equal to 1 exactly; the expectation that quantum effects will significantly modify the classical value of the orbital g is therefore reasonable. It is significant that available spectroscopic data indicate that g_S and g_L are probably modified such that g_S is increased by δ_S while g_L is decreased by δ_L . Modern, high precision measurements of the electron and muon orbital g_L are therefore required, in order to properly determine by experiments the true value of $g_L - 1$, perhaps to about one part in a trillion as was recently done for $g_S - 2$.

> Ayodeji Awobode University of Illinois at Urbana-Champaign

Date submitted: 08 Jan 2009 Electronic form version 1.4