Abstract for an Invited Paper
for the APR09 Meeting of
The American Physical Society

Recent Results from IceCube1
TERESA MONTARULI, University of Wisconsin - Madison

In two more construction seasons IceCube, the first cubic-kilometer neutrino telescope, will be completed according to the initial schedule. The instrumentation of this extremely large volume allows to measure neutrinos in the energy range from about 100 GeV up to energies larger than 10^{17} eV. When complete, IceCube will reach sensitivities well below expected neutrino fluxes from astrophysical sources accelerating hadrons. A ground-based extensive air-shower, IceTop, measuring showers induced by primaries of energy between $10^{15} - 10^{17}$ eV, enriches the physics potential of this observatory at the South Pole operating standalone and in coincidence with the deep ice detector. The current results of IceCube in incomplete configurations and the physics reach of the full detector will be discussed as well as the low energy extension DeepCore and possible high energy extensions.

1http://www.icecube.wisc.edu