Abstract Submitted for the APR09 Meeting of The American Physical Society

Direct Measurement of Low-Energy Resonances in ${}^{31}P(p,\alpha){}^{28}Si$ and 35 Cl(p, α) 32 S CATALIN MATEI, Oak Ridge Associated Universities, B.H. MOAZEN, K.Y. CHAE, K.L. JONES, R.W. KAPLER, S.T. PITTMAN, U. of Tennessee, D.W. BARDAYAN, C.D. NESARAJA, S.D. PAIN, M.S. SMITH, ORNL, J. ALLEN, K.A. CHIPPS, R. HATARIK, C. MATTHEWS, P.D. O'MALLEY, T. PELHAM, W.A. PETERS, Rutgers U., J.C. BLACKMON, M. MATOS, LSU, R.L. KOZUB, J. ROGERS, D.J. SISSOM, TTU — Reaction cycles in explosive hydrogen burning in novae and X-ray bursts influence both the energy generation and the processing of material to higher masses. The ${}^{31}P(p,\alpha){}^{28}Si$ and ${}^{35}Cl(p,\alpha){}^{32}S$ reactions are thought to lead to the formation of reaction cycles in the Si-Ar region, but the strength of these cycles depends on the $(p,\gamma)/(p,\alpha)$ reaction rate ratio. Previous attempts to measure the strength of low-energy resonances in ${}^{32}S$ and ${}^{36}Ar$ have relied on indirect methods or resulted only in setting upper limits for a number of the resonances of interest. We have measured the strength of low-energy resonances in ³²S and ³⁶Ar at Oak Ridge National Laboratory by using stable ³¹P and ³⁵Cl beams and a differentially pumped windowless hydrogen gas target to detect p- α coincidences in arrays of silicon strip detectors. Details of the experimental configuration and results will be presented. *This work is supported in part by the U.S. DOE and NSF.

> Catalin Matei Oak Ridge Associated Universities

Date submitted: 08 Jan 2009

Electronic form version 1.4