Abstract Submitted for the APR09 Meeting of The American Physical Society

Photo-disintegration of ³He below $E_{\gamma} = 15$ MeV at $HI\vec{\gamma}S^{1}$ B.A. PERDUE, M.W. AHMED, S.S. HENSHAW, J. LI, S. MIKHAILOV, S. STAVE, H.R. WELLER, Y. WU, Duke U. and TUNL, P.P. MARTEL, A. TEYMURAZYAN, UMass, Amherst and TUNL — Differential cross sections of the ${}^{3}\text{He}(\gamma,n)$ pp reaction have been measured at HI $\vec{\gamma}$ S. Measurements were taken at $E_{\gamma} = 11.4, 12.8, 13.5, and$ 14.7 MeV. The breakup neutrons were detected using liquid scintillator detectors placed at 75 cm from the target center and at the scattering angles of $\theta = 50^{\circ}$. 75°, 90°, 105°, 130°, and 160°. At a given scattering angle, theory² predicts that $\frac{d^3\sigma}{dE_n d\Omega_n}(E_n)$ peaks near E_n^{max} . This peaking in the energy distribution is predicted to begin around $E_{\gamma} = 10$ MeV and becomes more pronounced as the incident γ ray energy is increased. Below $E_{\gamma} = 10$ MeV and at a given scattering angle the predicted neutron energy distribution is consistent with a *phase space only* neutron energy distribution. The measured differential cross sections for $E_{\gamma} = 11.4$ and 12.8 MeV do not show peaking in the neutron energy distribution as predicted by theory, and the shape of the energy distribution at a given scattering angle is consistent with the shape of a phase space distribution. The peaking near E_n^{max} of the energy distribution is observed at $E_{\gamma} = 13.5$ and 14.7 MeV.

¹Supported in part by USDOE Grant DE-FG02-97ER41033. ²Deltuva *et. al.* Phys. Rev. **C72** 054004 (2005)

> Brent A. Perdue Duke University and TUNL

Date submitted: 09 Jan 2009

Electronic form version 1.4