Precision atomic masses for neutrinoless double-beta-decay and double-electron-capture\(^1\) EDMUND MYERS, MATTHEW REDSHAW, BRI-ANNA MOUNT, Florida State University — As currently understood, the definitive observation of neutrinoless double-beta-decay will imply that neutrinos are their own antiparticles (Majorana particles), while measurements of the decay rate, or limits on the rate, provide information on absolute neutrino mass. Large-scale neutrinoless double-beta-decay detectors, proposed or under development, such as EXO, CUORE, GERDA, MAJORANA, etc. should be sensitive to a linear combination of neutrino masses, the “effective Majorana mass of the electron neutrino”, below 0.1 eV/c\(^2\). The signature of neutrinoless double-beta decay is a sharp peak in the total electron-energy spectrum at the Q-value of the decay – the mass-energy difference between the parent and daughter atoms. Using precision, cryogenic mass spectrometry, with one or two multiply-charged ions in a Penning trap, we have now measured the atomic masses of \(^{136}\text{Xe}\), \(^{130}\text{Te}\), \(^{130}\text{Xe}\), \(^{76}\text{Ge}\), \(^{76}\text{Se}\) to a fractional precision of 2 x \(10^{-10}\) or better, corresponding to Q-values with uncertainties below 25 eV. This is more than sufficient precision for the proposed large-scale experiments. Progress on mass measurements of \(^{74}\text{Ge}\) and \(^{74}\text{Se}\), relevant to resonance-enhanced neutrinoless double-electron capture in \(^{74}\text{Se}\), will also be reported.

\(^{1}\)Support from NSF PHY-0652849 and NIST PMG

Edmund Myers
Florida State University

Date submitted: 08 Jan 2009
Electronic form version 1.4