Abstract Submitted for the APR09 Meeting of The American Physical Society

Quantum Gravity of IED Particles J. ZHENG-JOHANSSON — The internally electrodynamic (IED) model¹, developed based on overall experimental observations since 2000, briefly states that a simple material particle like electron is composed of an oscillatory charge of a characteristic frequency Ω and zero rest mass, generally also traveling at velocity v, and the resulting Doppler-effected electromagnetic waves (\mathbf{E}, \mathbf{B})'s. Based on first principles solutions for the IED processes a range of basic particle equations/properties have become predictable. One prediction is: two IED particles of masses M, M_2 (= $\hbar\Omega_i/c$, i = 1, 2) and charges q_1, q_2 separated at r apart in a dielectric vacuum act always on one another an attractive force $F = \sqrt{F_{12}F_{21}} = \frac{CM_1M_2}{4\pi\epsilon_0r^2}$, where $\mathbf{F}_{ij} = q_j\mathbf{v}_{pj} \times \mathbf{B}_i$ is the Lorentz or depolarization radiation force on q_j due to the radiation depolarization field $\mathbf{E}_{pi} = -\chi_0 \cdot \mathbf{E}_i$ of q_i , electric field \mathbf{E}_i , and magnetic field \mathbf{B}_i , with \mathbf{E}_{pi} driving q_j into motion at velocity $\mathbf{v}_{pj} = \int \frac{q_j \mathbf{d} \mathbf{E}_{pi}}{M_j}$), i, j = 1, 2; $C = \frac{\pi\chi_0 \cdot e^4}{c_0^2 h^2 \rho_i}$ with $q_1, q_2 = \pm e$ and e, ϵ_0, h fundamental constants of the usual meaning. F resembles directly Newton's gravitational force. The fields E_i, B_i are by nature quantized at the scale of Planck constant h; consequently E_{pi} and therefore F are each quantized at the scale h. The present work gives a formal quantum electrodynamic re-derivation of this force.

¹See e.g. a) arxiv:0812.3951, b) J Phys Conf Ser128. 012019, 2008.

Dr. J.X. Zheng-Johansson Inst. of Fundamental Physics Research, Nykoping, SW

Date submitted: 12 Jan 2009

Electronic form version 1.4