Abstract Submitted
for the APR09 Meeting of
The American Physical Society

Massive Black Hole Mergers: Can we see what LISA will hear?\(^1\)
JOAN CENTRELLA, NASA Goddard Space Flight Center, COLE MILLER,
CHRIS REYNOLDS, University of Maryland, JAMES VAN METER, JOHN WISE,
JOHN BAKER, NASA Goddard Space Flight Center, DARIAN BOGGS, University
of Maryland, BERNARD KELLY, SEAN MCWILLIAMS, NASA Goddard Space
Flight Center — Coalescing massive black hole binaries are formed when galaxies
merge. The final stages of this coalescence produce strong gravitational wave signals
that can be detected by the space-borne LISA. When the black holes merge in the
presence of gas and magnetic fields, various types of electromagnetic signals may
also be produced. Modeling such electromagnetic counterparts requires evolving the
behavior of both gas and fields in the strong-field regions around the black holes.
We have taken a first step towards this problem by mapping the flow of pressureless
matter in the dynamic, 3-D general relativistic spacetime around the merging black
holes. We report on the results of these initial simulations and discuss their likely
importance for future hydrodynamical simulations.

\(^1\)This work was supported in part by NASA grant 06-BEFS06-19, and the simula-
tions were carried out at the NASA Center for Computational Sciences (Goddard
Space Flight Center).

Joan Centrella
NASA Goddard Space Flight Center

Date submitted: 09 Jan 2009 Electronic form version 1.4