Abstract Submitted for the APR09 Meeting of The American Physical Society

Spin assignments of ²²Mg levels through a ²⁴Mg(p,t)²²Mg measurement K.Y. CHAE, U of TN, D.W. BARDAYAN, J.C. BLACKMON, ORNL, K. CHIPPS, CO School of Mines, R. HATARIK, Rutgers, K.L. JONES, U of TN, R.L. KOZUB, TTU, J.F. LIANG, ORNL, C. MATEI, ORAU, B.H. MOAZEN, U of TN, C.D. NESARAJA, ORNL, P.D. O'MALLEY, S.D. PAIN, Rutgers, S.T. PITTMAN, U of TN, M.S. SMITH, ORNL — The ¹⁸Ne(alpha,p)²¹Na reaction plays a crucial role in the (alpha,p) process, which leads to the rapid proton capture process in X-ray bursts. The reaction rate depends upon properties of ²²Mg levels above the alpha threshold at 8.14 MeV. Despite recent studies of these levels, only the excitation energies are known for most with no constraints on the spins. We have studied the ²⁴Mg(p,t)²²Mg reaction at the ORNL Holifield Radioactive Ion Beam Facility, and by measuring the angular distributions of outgoing tritons, we provide some of the experimental constraints on the spins of astrophysically-important ¹⁸Ne(alpha,p)²¹Na resonances. Details of the experimental setup and results will be presented. * This work was supported in part by the US DOE and the NSF.

Kyungyuk Chae University of Tennessee, Knoxville

Date submitted: 09 Jan 2009 Electronic form version 1.4