Study of 155Gd by the (p,dγ) Reaction1 J.M. ALLMOND, C.W. BEAUSANG, T.J. ROSS, B.K. DARAKCHIEVA, Department of Physics, University of Richmond, Virginia 23173, STARS-LIBERACE COLLABORATION — The structure of the $N = 90$ and neighboring nuclei have been of recent interest due to an unusual number of low-lying 0^+ states and a rapid change from vibrational to rotational character. The single, unpaired neutron in 155Gd ($N = 91$) acts as a probe to the 154Gd ($N = 90$) core. To study this, an experiment was conducted at the 88-Inch Cyclotron at LBNL using the STARS and LiBerACE detector arrays. A 25 MeV proton beam incident onto a 156Gd target was used to populate states in 155Gd by the (p,dγ) reaction. The exit channel of the reaction and the residual excitation energy of the nucleus were tagged by detecting scattered charged particles in a Si telescope array (STARS) while coincident gamma rays were detected using 6 Ge clovers and 1 Ge LEPS detector of the LiBerACE array. Particle-γ and particle-γ-γ correlations are used to probe the structure of 155Gd. Preliminary results are presented.

1This work was performed under the auspices of the U.S. Department of Energy under contract numbers DE-FG52-06NA26206 (UR), DE-AC52-07NA27344 (LLNL), and DE-AC02-05CH11231 (LBNL).