Abstract Submitted for the APR09 Meeting of The American Physical Society

Experimental test of new technique to overcome spin-depolarizing resonances 1 V.S. MOROZOV, A.W. CHAO², A.D. KRISCH, M.A. LEONOVA, R.S. RAYMOND, D.W. SIVERS, V.K. WONG, Univ. of Michigan, Ann Arbor, MI 48109-1040, A. GARISHVILI³, R. GEBEL, A. LEHRACH, B. LORENTZ, R. MAIER, D. PRASUHN, H. STOCKHORST, D. WELSCH, Forschungszentrum Jülich, IKP, D-52425 Jülich, F. HINTERBERGER, Helmholtz Inst., Univ. Bonn, D-53115 Bonn, A.M. KONDRATENKO, GOO Zaryad, Novosibirsk, RU-630058 — We recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC), by sweeping an rf solenoid's frequency through an rf-induced spin resonance with both the KC and traditional Fast Crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns. Compared to FC with the same crossing speed, KC reduced the depolarization by measured factors of 4.7 \pm 0.3 and 19 \pm $_5^{12}$ for unbunched and bunched beams, respectively. This showed the large potential benefit of KC over FC.

Vasily Morozov Univ. of Michigan, Ann Arbor, MI 48109-1040

Date submitted: 25 Feb 2009 Electronic form version 1.4

¹Supported by grants from the German BMBF Science Ministry, its JCHP-FFE program at COSY, and the Helmholtz Association via funds provided to the virtual institute "Spin and strong QCD" (VH-VI-231).

²Also at SLAC, 2575 Sand Hill Rd., Menlo Park, CA 94025

³Also at Erlangen-Nürnberg Univ., D-91058 Erlangen