Abstract Submitted for the APR09 Meeting of The American Physical Society

Trace Anomaly in Strong Electromagnetic Fields LANCE LABUN, JOHANN RAFELSKI, Department of Physics, University of Arizona, and Department fuer Physik der Ludwig-Maximillians-Universitaet Muenchen und Maier-Leibniz-Laboratory — Violation of the superposition principle in the Maxwell field could arise from intrinsic nonlinearity in the fundamental theory of the photon, such as seen in Born-Infeld (BI) electrodynamics, but certainly occurs due to charged particle vacuum fluctuations, i.e. one-loop quantum electrodynamics (QED). The necessary presence of a dimensioned scale in a nonlinear theory induces a nonvanishing trace in the energy-momentum tensor

$$T^{\mu}_{\mu} = -M \frac{dL_{\text{eff}}}{dM} = -4 \left(L_{\text{eff}} - \mathcal{S} \frac{\partial L_{\text{eff}}}{\partial \mathcal{S}} - \mathcal{P} \frac{\partial L_{\text{eff}}}{\partial \mathcal{P}} \right),$$

where S, \mathcal{P} are the scalar and pseudo scalar field invariants. T^{μ}_{μ} has the form of the Einstein cosmological constant, and hence intense electromagnetic fields generate a localized, dark energy-like concentration.

References:

Trace Anomaly of Nonlinear Electrodynamics and its (Anti) Gravitational Effect arXiv:0811.4467 [hep-th] and QED Conformal Anomaly in External Fields arXiv:0810.1323 [hep-ph]

> Lance Labun University of Arizona

Date submitted: 11 Jan 2009

Electronic form version 1.4