Abstract Submitted for the APR10 Meeting of The American Physical Society

Photons are Weightless in the Local System of Reference ARI BRYNJOLFSSON, Applied Radiation Industries — It is generally surmised that photon's gravitational mass m_g is equivalent to its inertial mass $m_i = h\nu/c^2$. This is derived from incorrectly designed and incorrectly interpreted experiments. For measuring the energy change ΔE (the gravitational redshift) of a photon during its time of flight Δt , we must have that $\Delta E \cdot \Delta t > h/(2\pi)$ (confer uncertainty principle). But in all the many experiments, the product $\Delta E \cdot \Delta t$ is much smaller than $h/(2\pi)$; see e.g. those by Pound and Repka in Phys. Rev. Lett. 4 (1960) 337. In all the experiments, it was therefore impossible to detect any change in ΔE . No conclusion about photons weight or weightlessness can be derived from any of these experiments. However, plasma redshift and solar redshift experiments, see: Brynjolfsson, arXiv:astro-ph/0401420, make it clear that $m_g = 0$ for the optical photons in a local system of reference, while in a distant reference system the gravitational redshift is reversed; that is, the photons are seen as gravitationally repelled; see: Brynjolfsson, arXiv:astro-ph/0408312. The plasma redshift and weightlessness of photons revolutionize the basic physics and cosmology. I will briefly discuss the theory and the cosmological perspective.

> Ari Brynjolfsson Applied Radiation Industries

Date submitted: 15 Oct 2009

Electronic form version 1.4