Abstract Submitted for the APR10 Meeting of The American Physical Society

Transient field g factor measurement on radioactive ${}^{100}Pd(2_1^+)$ via α transfer¹ NOEMIE BENCZER-KOLLER, Rutgers University, KARL-HEINZ SPEIDEL, Bonn University, GERFRIED KUMBARTZKI, GULHAN GURDAL, Rutgers, TAN AHN, ROBERT CASPERSON, RAPHAEL CHEVRIER, ANDREAS HEINZ, GABRIELE ILIE, DESIREE RADECK, Yale University, MALLORY SMITH, Yale, ELIZABETH WILLIAMS, Yale University — ¹⁰⁰Pd has four proton holes in the $g_{9/2}$ and four neutrons in the $d_{5/2}$ orbitals around the N = Z = 50shell closures and is therefore a suitable candidate for studying single particle effects in the nuclear wave function. The α transfer from a carbon target to an energetic beam of ⁹⁶Ru close to the Coulomb barrier has been used to populate the 2_1^+ state in radioactive ¹⁰⁰Pd via the reaction ¹²C(⁹⁶Ru,⁸Be)¹⁰⁰Pd. ⁹⁶Ru beams of 343 MeV were provided by the Yale WNSL accelerator. The two α particles from the breakup of ⁸Be and the carbon ions which Coulomb excited the Ru projectiles were detected in a Si detector in coincidence with the γ rays recorded in four Ge Clover detectors. Angular correlations and precessions have been measured via the transient field technique. Preliminary data yield the first measurement of the g factors of the 2_1^+ state in ¹⁰⁰Pd and of the 4_1^+ state in ⁹⁶Ru.

¹The authors thank the NSF, the DOE and the DFG for their support.

Noemie Benczer Koller Rutgers University

Date submitted: 20 Oct 2009

Electronic form version 1.4