APR10-2009-000293

Abstract for an Invited Paper for the APR10 Meeting of the American Physical Society

Fission Barriers of Compound Superheavy Nuclei¹ WITOLD NAZAREWICZ, University of Tennessee/ORNL

The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work [1,2], we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264 Fm, 272 Ds, 278 Cp, 292 114, and 312 124. For nuclei around 278 Cp produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around 292 114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures.

J.C. Pei, W. Nazarewicz, J.A. Sheikh and A.K. Kerman, Phys. Rev. Lett. **102**, 192501 (2009).
J.A. Sheikh, W. Nazarewicz, and J.C. Pei, Phys. Rev. C **80**, 011302(R) (2009).

¹This work was supported by the U.S. Department of Energy under Contract Nos. DE-FG03-03NA00083, DE-FG02-96ER40963, DE-AC05-00OR22725, and DE-FC02-07ER41457.