Fission Barriers of Compound Superheavy Nuclei
WITOLD NAZAREWICZ, University of Tennessee/ORNL

The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work [1,2], we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for ^{264}Fm, ^{272}Ds, ^{278}Cp, $^{292}\text{114}$, and $^{312}\text{124}$. For nuclei around ^{278}Cp produced in “cold fusion” reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around $^{292}\text{114}$ synthesized in “hot fusion” experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures.

1This work was supported by the U.S. Department of Energy under Contract Nos. DE-FG03-03NA00083, DE-FG02-96ER40963, DE-AC05-00OR22725, and DE-FC02-07ER41457.