Abstract Submitted for the APR10 Meeting of The American Physical Society

A study on the interaction between hydrogen and $Pd/SiO_2/Si^1$ M. ZHAO, S. NAGATA, T. SHIKAMA, IMR, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan, A. INOUYE, S. YAMAMOTO, M. YOSHIKAWA, JAEA. 1233 Watanuki, Takasaki, Gunma 370-1292, Japan, SHIKAMA LAB. TEAM, ADVANCED CERAMIC GROUP TEAM — The surface electrical resistance of $Pd/SiO_2/Si$ and Pd/Al_2O_3 were monitored by a two-probe technique during the H_2 exposure to clarify the interaction of H_2 and ultra thin Pd film(<2nm). In this work, the $Pd/SiO_2/Si$ structure has a sensitivity of 30 to 1% H₂/Ar presence within 1.4 s at RT, where the sensitivity was defined as the ratio of the surface resistance change to the original resistance, $(R - R_0)/R_0$. However, the sensitivity of ultra thin Pd film observed in Pd/Al_2O_3 was less than 2. Compared to Pd/Al_2O_3 , the non-linear relationship of I - V of Pd/SiO₂/Si reveals a possible Schottky barrier and that electrons actually go through the Si substrate. When the thickness of Pd film in $Pd/SiO_2/Si$ is decreased to less than 2 nm, Si substrate will demonstrate a large change of the charge concentration during the interaction between the Pd film and H₂. This change amplified displays the change of the work function of Pd films and together with an already accelerated response due to a thinner Pd film, Pd/SiO₂/Si provides an excellent H_2 detecting capability.

¹Supported by the "Tohoku Leading Women's Jump up Project."

Ming Zhao IMR, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan

Date submitted: 27 Oct 2009

Electronic form version 1.4