A study on the interaction between hydrogen and Pd/SiO$_2$/Si1

M. ZHAO, S. NAGATA, T. SHIKAMA, IMR, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan, A. INOUYE, S. YAMAMOTO, M. YOSHIKAWA, JAEA, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan, SHIKAMA LAB. TEAM, ADVANCED CERAMIC GROUP TEAM — The surface electrical resistance of Pd/SiO$_2$/Si and Pd/Al$_2$O$_3$ were monitored by a two-probe technique during the H$_2$ exposure to clarify the interaction of H$_2$ and ultra thin Pd film(<2nm). In this work, the Pd/SiO$_2$/Si structure has a sensitivity of 30 to 1% H$_2$/Ar presence within 1.4 s at RT, where the sensitivity was defined as the ratio of the surface resistance change to the original resistance, $(R - R_0)/R_0$. However, the sensitivity of ultra thin Pd film observed in Pd/Al$_2$O$_3$ was less than 2. Compared to Pd/Al$_2$O$_3$, the non-linear relationship of $I - V$ of Pd/SiO$_2$/Si reveals a possible Schottky barrier and that electrons actually go through the Si substrate. When the thickness of Pd film in Pd/SiO$_2$/Si is decreased to less than 2 nm, Si substrate will demonstrate a large change of the charge concentration during the interaction between the Pd film and H$_2$. This change amplified displays the change of the work function of Pd films and together with an already accelerated response due to a thinner Pd film, Pd/SiO$_2$/Si provides an excellent H$_2$ detecting capability.

1Supported by the “Tohoku Leading Women’s Jump up Project.”

Ming Zhao
IMR, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan

Date submitted: 27 Oct 2009

Electronic form version 1.4