Abstract Submitted for the APR10 Meeting of The American Physical Society

Spin Dependent Absorption Cross Section of Neutron ³He C.B. FU, NIST; Indiana Univ., T.R. GENTILE, NIST, T.G. WALKER, Univ. of Wisconsin Madison, F.E. WIETFELDT, M.G. HUBER, Tulane Univ. — Measurement of neutron scattering lengths for light nuclei provides a good opportunity to test theories of nucleon-nucleon and three-nucleon forces. The largest systematic uncertainty for recent measurements of the neutron- ^{3}He incoherent scattering length originates from lack of precise knowledge of the spin dependent abosorption cross section (SDACS). To measure the SDACS to ~0.1\%, the primary experimental challenge is to measure the ${}^{3}He$ polarization to the same precision. We are developing a new approach to measure the polarization based on the free induction decay (FID) method. The ${}^{3}He$ gas, sealed in a special T-shape cell, is polarized with the spin exchange optical pumping method. The polarized ${}^{3}He$ nuclei, which are magnetic dipoles, can induce a classical magnetic field. By using the ${}^{3}He$ itself as a magnetometer, the Larmor frequency of the ${}^{3}He$ can be measured with FID method. We have chosen a special T-shape for the cell that allows for a calculable magnetic field from the ${}^{3}He$ gas while also permitting acceptable neutron transimission. If we flip the polarized ${}^{3}He$ 180° , the magnetic field will change and therefore the Larmor frequency of ${}^{3}He$ will change also. With this method, the polarization of ${}^{3}He$, and then the SDACS of $n+^3He$ can be measured to high precision.

Changbo Fu National Inst. of Stardards and Tech.; Indiana Univ.

Date submitted: 22 Oct 2009 Electronic form version 1.4