Abstract Submitted for the APR10 Meeting of The American Physical Society

A precision description of deuteron electromagnetic form factors at low \mathbf{Q}^2 DANIEL PHILLIPS¹, Ohio University — I will discuss the use of chiral effective theory (χ ET) to compute the form factors G_C , G_Q , and G_M that are measured in elastic electron-deuteron scattering. I will show that NN potentials derived from χ ET, when used in concert with the χ ET current operators, give an accurate description of the ratio G_Q/G_C for momentum transfers $\sqrt{Q^2} < 0.6$ GeV. I will describe ongoing work to achieve similar precision for the magnetic form factor G_M . I will also show a prediction for the charge form factor G_C that is based on a χ ET calculation at $O(eP^5)$. Such a prediction should be accurate up to corrections of order 1–2% for momentum transfers $\sim M_{\pi}^2$. I will explain how this uncertainty grows with Q^2 , and then close by showing the resulting χ ET prediction (including theoretical uncertainties) for A(Q) in the range $\sqrt{Q^2} < 0.7$ GeV. This prediction can be compared to recent JLab data on A(Q), taken in the range $0.2 < \sqrt{Q^2} < 0.7$ GeV.

¹Research supported by the US Department of Energy.

Daniel Phillips Ohio University

Date submitted: 23 Oct 2009

Electronic form version 1.4