APR10-2009-000569

Abstract for an Invited Paper for the APR10 Meeting of the American Physical Society

Enhanced production of direct photons in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV and implications for the initial temperature YASUYUKI AKIBA¹, RIKEN

The production of e^+e^- pairs for $m_{e^+e^-} < 300 \text{ MeV}/c^2$ and $1 < p_T < 5 \text{ GeV}/c$ is measured in p + p and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$. Enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p + p is exponential in transverse momentum, with inverse slope $T = 221 \pm 19(\text{stat}) \pm 19(\text{syst})$ MeV. Hydrodynamical models with initial temperatures ranging from $T_{init} \approx 300 - 600$ MeV at times of 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ≈ 170 MeV.

¹for PHENIX Collaboration