Structure of 69Br and the rp-process in X-ray bursts1 CAROLINE NESARAJA, MICHAEL SMITH, Oak Ridge National Laboratory — The long (35.5 sec.) positron decay lifetime of 68Se, coupled with the low estimated probability of proton capture into 69Br, make 68Se a waiting point in the rp-process powering explosions in X-ray binaries. The thermonuclear reaction flow in X-ray bursts (XRB) depends sensitively on the properties of 69Br, especially whether or not the ground state is proton bound [1]. Recent studies of the mass of 68Se and the decay of 69Br prompt a reassessment of the 69Br properties relevant for rp-process burning in XRB. In our current project to evaluate the structure of nuclei with mass 69, we will focus on 69Br. Our assessment, which will be included in the ENSDF database at the U.S. National Nuclear Data Center, will be used to generate a new reaction rate for proton capture on 68Se, and subsequently for new X-ray burst nucleosynthesis calculations.

1ORNL is managed by UT-Battelle, LLC for the U.S. DOE under contract DE-AC05-00OR22725