Centrality dependence of number and transverse momentum correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV MONIKA SHARMA1, Wayne State University, STAR COLLABORATION — Recent measurements at RHIC have revealed a ridge-like structure in the triggered and untriggered two-particle correlations in Au+Au collisions. A significant interest lies in studying diverse correlation functions which provide better understanding and sensitivity to various reaction mechanisms. In this work we present charged dependent measurements of two-particle number density, $R_{2}(\Delta \eta, \Delta \phi)$ correlation function, transverse momentum $R_{2}^{\Delta p_{T1}\Delta p_{T2}}(\Delta \eta, \Delta \phi)$ correlation function and a hybrid observable $C(\Delta \eta, \Delta \phi)$, designed to provide new and additional insight in the collision dynamics of Au + Au interactions. These observables are constructed as a function of collision centrality for particles in the range $|\eta| < 1.0$ and $0.2 < p_{T} < 2.0$ GeV/c. The three observables exhibit striking similarities with the emergence of a near-side ridge for unlike sign correlations ($R_{2,+,-}, R_{2,+,-}^{\Delta p_{T1}\Delta p_{T2}}$ and $C_{+,-}$) and substantial deformation of the away-side correlation strength, while modulated ridge-like structure is observed for like-sign correlations in $R_{2,-,-}(+,+) \text{ and } C_{-,,-}(+,+)$.

1for the STAR Collaboration

Monika Sharma for the STAR Collaboration
Wayne State University

Date submitted: 12 Jan 2011

Electronic form version 1.4