A Dual-Phase Argon Ionization Detector for the Measurement of Nuclear Quench Factors and Coherent Neutrino Scattering1

SAMUELE SANGIORGIO, ADAM BERNSTEIN, Lawrence Livermore National Laboratory, MICHAEL FOXE, Pennsylvania State University, CHRIS HAGMANN, Lawrence Livermore National Laboratory, TENZING JOSHI, University of California-Berkeley, IGOR JOVANOVIC, Pennsylvania State University, KAREEM KAZKAZ, Lawrence Livermore National Laboratory — Dual-phase detectors based on noble elements are widely used for measuring low-energy nuclear recoils, for example in Dark Matter or Coherent Neutrino Scattering (CNS) searches. We have constructed a dual-phase Argon detector to measure the nuclear ionization quench factor of Argon from 10 keV down in the sub-keV range using a neutron beam and also a newer technique based on nuclear resonance fluorescence. The detector is also a prototype for a larger one to measure CNS at a nuclear reactor. We will present an overview of our program and report on the commissioning of the dual-phase prototype, with details on the proposed techniques for the quench factor measurements.

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funded by Lab-wide LDRD.