APR11-2011-000787

Abstract for an Invited Paper for the APR11 Meeting of the American Physical Society

Production of the γ -ray emitters ²²Na and ²⁶Al in classical novae¹ CHRISTOPHER WREDE, University of Washington

A classical nova is a thermonuclear explosion occurring on the surface of a white dwarf star that is accreting hydrogen-rich material from a companion star in a binary system. Novae are expected to eject the γ -ray astronomy targets ²²Na and ²⁶Al in observable quantities. If ²²Na were observed it could provide an unprecedented isotopic constraint for nova models. The observed Galactic ²⁶Al/⁶⁰Fe ratio is already used as a benchmark for models of nucleosynthesis in massive stars and their supernovae, but a substantial contribution of ²⁶Al from novae could skew such comparisons. The expected production of ²²Na and ²⁶Al in novae is sensitive to modeling details and uncertainties in the thermonuclear rates of the ²²Na(p, γ)²³Mg and ²⁵Al(p, γ)²⁶Si reactions, respectively. We recently measured the strengths of the relevant ²²Na(p, γ)²³Mg resonances to be higher than previous measurements by factors of two or more using the tandem Van de Graaff accelerator at the Center for Experimental Nuclear Physics and Astrophysics (CENPA) and ²²Na targets prepared at TRIUMF-ISAC. We also evaluated the ²⁵Al(p, γ)²⁶Si rate at CENPA based on available experimental data, reducing the uncertainty by large factors. An imminent CENPA-led experiment is expected to further solidify the ²⁵Al(p, γ)²⁶Si rate.

¹Supported by the United States Department of Energy, Office of Nuclear Physics, under Contract No. DE-FG02-97ER41020.