Abstract Submitted for the APR11 Meeting of The American Physical Society

Exploring Stability of General Relativistic Accretion Disks\(^1\) OLEG KOROBKIN, ERNAZAR ABDIKAMALOV, Center for Computation and Technology, Louisiana State University, ERIK SCHNETTER, Perimeter Institute, Canada, NIKOLAOS STERGIOULAS, Aristotle University of Thessaloniki, Greece, BURKHARD ZINK, University of Tuebingen, Germany — Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact objects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number \(m = 1\) is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the \(m = 1\) mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

\(^1\)Supported by the NSF grants 0721915 (Alpaca), 0904015 (CIGR), and 0905046/0941653 (PetaCactus).