The next phase of the Axion Dark Matter eXperiment1 GIAN-PAOLO CAROSI, S. ASZTALOS, C. HAGMANN, D. KINION, LLNL, K. VAN BIBBER, LLNL / NPS, M. HOTZ, D. LYAPUSTIN, L. ROSENBERG, G. RYBKA, A. WAGNER, University of Washington, J. HOSKINS, C. MARTIN, P. SIKIVIE, N. SULLIVAN, D. TANNER, University of Florida, R. BRADLEY, NRAO, J. CLARKE, University of California, Berkeley, ADMX COLLABORATION — Axions are a well motivated dark matter candidate which may be detected by their resonant conversion to photons in the presence of a large static magnetic field. The Axion Dark Matter eXperiment recently finished a search for DM axions using a new ultralow noise microwave receiver based on a SQUID amplifier. The success of this precursor experiment has paved the way for a definitive axion search which will see the system noise temperature lowered from 1.8 K to 100 mK, dramatically increasing sensitivity to even pessimistic axion models as well as increasing scan speed. Here we discuss the implementation of this next experimental phase.

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344