Abstract Submitted for the APR11 Meeting of The American Physical Society

Production of ¹³N Using a 400keV Van de Graaff Positive Ion Accelerator¹ CHRISTOPHER PROKOP, JOHN CLYMER, NICHOLAS COMPTON, HENRY DAM, ADAM HANSON, JUSTEN PAUTZKE, ANDREW ROBERTS, Minnesota State University, Mankato — A target system has been developed to study the production and extraction of ¹³N, a short-lived radioisotope of nitrogen ($t_{1/2} \approx 9.6$ minutes), formed via the ¹²C(d,n)¹³N reaction. The target is comprised of a graphite rod positioned in a custom-built target chamber where it is irradiated by a deuteron beam. Post irradiation, the target is flushed with H₂ or CO₂ gas, and heated via a large applied current producing ¹³NH₃ or HC¹³N and ¹³NO₂ respectively. Radiolabeled ¹³N compounds are used for physiological imaging using Positron Emission Tomography (PET). The production system used the 400keV Van de Graaff Positive Ion Accelerator housed in the Applied Nuclear Science Lab at Minnesota State University, Mankato. While this energy, slightly above threshold, is too low to make sufficient amounts of ¹³N for imaging work, the system and procedure can be implemented on higher energy machines. Preliminary system results will be presented as well as accelerator calibration and reaction data.

¹Partial funding provided through the MSU, Mankato Undergraduate Research Center.

Christopher Prokop Minnesota State University, Mankato

Date submitted: 18 Jan 2011

Electronic form version 1.4