Abstract Submitted for the APR11 Meeting of The American Physical Society

Constraints on Neutrino Oscillations and Spectra from Neutrino Nucleosynthesis¹ SAM M. AUSTIN, MSU/NSCL, ALEX HEGER, CLARISSE TUR, JINA COLLABORATION — We have studied the sensitivity to variations in the triple alpha and ¹²C(α, γ)¹⁶O reaction rates, of the yield of the neutrino process isotopes ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, and ¹⁸⁰Ta in core collapse supernovae. Compared to solar abundances, less than 15% of ⁷Li, about 25-80% of ¹⁹F, and about half of ¹³⁸La is produced in these stars. Over a range of $\pm 2\sigma$ for each helium-burning rate, ¹¹B is overproduced and the yield varies by an amount larger than the variation caused by the effects of neutrino oscillations. The total ¹¹B yield, however, may eventually provide constraints on supernova neutrino spectra.

¹NSF: PHY06-06007, PHY02-16783(JINA)); DOE: DE-AC52-06NA25396, DE-FC02-01, ER41176

Sam M. Austin MSU/NSCL

Date submitted: 18 Jan 2011

Electronic form version 1.4