APR11-2011-000933

Abstract for an Invited Paper for the APR11 Meeting of the American Physical Society

Discovery of new superheavy element isotopes¹ JACKLYN GATES, Lawrence Berkeley National Laboratory

The first confirmation of element 114 production and decay was performed in 2009 with the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The ${}^{48}Ca + {}^{242}Pu$ reaction was used. Compound nucleus evaporation residues were separated from beam and other reaction products with the Berkeley Gas-filled separator and implanted in the focal plane detector system. Production and decay of one atom each of ${}^{287}114$ (via the ${}^{242}Pu({}^{48}Ca, 3n){}^{287}114$ reaction) and $^{286}114$ (via the 242 Pu(48 Ca, 4n) $^{286}114$ reaction) were observed. Production cross sections, decay modes, decay energies, and half-lives and for these element 114 isotopes and their daughters were consistent with those reported by the Dubna Gas Filled Recoil Separator Group (Yuri Oganessian, J. Phys. G: Nucl. Part. Phys. 34 (2007) R165–R242). In 2010, the ${}^{48}Ca + {}^{242}Pu$ reaction was used again, at an increased beam energy to optimize the production of new isotope, ${}^{285}114$, by the 242 Pu(48 Ca, 5n) 285 114 reaction. The production and decay of one atom of 286 114 (via the 242 Pu(48 Ca, 4n) 286 114 reaction) was observed, re-confirming the properties of this isotope. In addition, a single event corresponding to the production and decay of ${}^{285}114$ (via the ${}^{242}Pu({}^{48}Ca, 5n){}^{285}114$ reaction) was observed. The implantation of ${}^{285}114$ in the detector was followed by five α -decays and a spontaneous fission event, indicating the α -decays of new isotopes, ²⁸⁵114, ²⁸¹Cp, ²⁷⁷Ds, ²⁷³Hs, ²⁶⁹Sg, and the spontaneous fission of new isotope, ²⁶⁵Rf. The decay properties of all these new isotopes match expectations based on microscopic-macroscopic mass models supplemented with extrapolations of previously reported superheavy element isotope decay properties. However, some systematic differences between observed and predicted α -decay Q-values may be used to refine models of nuclear shell effects in heavy element isotopes.

¹Financial support was provided by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, of the US Department of Energy, under contract DE-AC02-05CH11231.