Investigation of an Unforced Duffing Equation having Fractional Power Damping RONALD E. MICKENS1, Physics Department, Clark Atlanta University, RAY BULLOCK2, W. EUGENE COLLINS3, The Center of Physics and Chemistry of Materials, Fisk University — The Duffing ODE provides a standard model for nonlinear oscillations for a broad range of phenomena in the natural and engineering sciences. The effects of dissipation are generally included by adding a “friction” force term, $f(v)$, proportional to an integer power of the velocity. Thus, oscillations take place, but with a decreasing amplitude, and which only decrease to zero in an infinite time interval. We examine the case where $f(v) = -av^p$, $a > 0$ and $0 < p < 1$, and demonstrate that the amplitude of the oscillations become zero in a finite time \cite{1}. This result may have relevance for the vibrations of carbon nanotubes and sheets of graphene sheets \cite{2}.

\cite{1} R. E. Mickens, Truly Nonlinear Oscillators (World Scientific, London, 2010).
\cite{2} A. Eichler et al., Nature Nanotechnology, Vol. 6 (June 2011), 339–342.

1Work supported in part by CAU School of Arts and Sciences Faculty Development Program.
2Supported by NSF Award \#0420516.
3Supported by NSF Award \#0420516.

Ronald Mickens
Clark Atlanta University

Date submitted: 09 Dec 2011

Electronic form version 1.4