APR12-2012-000154

Abstract for an Invited Paper for the APR12 Meeting of the American Physical Society

Isospin-symmetry-breaking effects in nuclear β decay¹

DAN MELCONIAN, Cyclotron Institute, Texas A&M University

Precisely measured ft values of $J^{\pi}=0^{+}\rightarrow0^{+}$ β decays of isospin T=1 nuclei are used to set stringent limits on scalar and right-handed interactions, verify the conserved vector current hypothesis at the $\sim 10^{-4}$ level, and provide the most precise measurement of V_{ud} , the up-down element of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. In order to utilize the measured ft values for these purposes, one must first apply theoretical corrections for isospin-symmetry-breaking and radiative effects. In recent years, the nuclear-structure-dependent isospin-symmetry-breaking calculations have been placed under intense scrutiny; concurrently, experimental work has measured these corrections in cases where they are relatively large. This talk will review the effects of isospin-symmetry breaking in superallowed transitions and discuss recent results aimed at testing the validity of the corrections that are applied.

¹This work is supported by the Department of Energy, Office of Nuclear Physics, under Award Nos. DE-SC0006936 and DE-FG02-93ER40773.