Abstract Submitted for the APR12 Meeting of The American Physical Society

Magnetic Resonances at Short Distances HORACE CRATER, The University of Tennessee Space Institute, CHEUK-YIN WONG, Oak Ridge National Laboratory — The magnetic interaction at short distances between two opposite electric or color charges in the ${}^{3}P_{0}$ state (J = 0, L = 1, S = 1, P = 1 and C = 1)is very attractive and can overwhelm the centrifugal barrier at short distances (of about 10^{-2} - 10^{-3} fermis), with a barrier between the short-distance region and the long-distance region. In the two body Dirac equations formulated in constraint dynamics, the short-distance attraction for this ${}^{3}P_{0}$ state admits a peculiar solution for the radial part of the relative wave function $u = r\psi$ that grows with distance as $r^{(1-\sqrt{1-4\alpha^{2}})/2}$, in addition to the usual solution that behaves as $r^{(1+\sqrt{1-4\alpha^{2}})/2}$. Both solutions have admissible behaviors at short distances and the usual solution leads to no resonant behavior. However, for the peculiar solution we find a resonance at about 28 MeV for $e^{+}e^{-}$ and a width of about 15 KeV.

> Horace Crater The University of Tennessee Space Institute

Date submitted: 03 Jan 2012

Electronic form version 1.4