Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

R.E. WALTZ, GA, F.L. WAELBROECK, U Texas-Austin — Static external resonant magnetic perturbations (RMPs) have been added to the \(\delta f \) gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow \(j_r \) and the corresponding plasma torque (density) \(R[j_r B_\theta/c] \), induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced \(q=m/n=6/3 \) islands with widths 5% of the minor radius. The island torque scales with the radial electric field \(E_r \), the island width \(w \), and the intensity \(I \) of the high-\(n \) micro-turbulence, as \(wE_r I^{1/2} \). The net island torque is null at zero \(E_r \) rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero \(E_r \) which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening.

1Work supported by the US DOE under DE-FG02-95ER54309 and DE-FG02-04ER-54742.