Abstract Submitted for the APR12 Meeting of The American Physical Society

Cluster calculations for the ⁶**He and** ⁹**Be spectra**¹ IGOR FILIKHIN, VLADIMIR SUSLOV, BRANISLAV VLAHOVIC, North Carolina Central University — The ⁶He and ⁹Be nuclei are considered as a mirror cluster systems αnn and $\alpha \alpha n$. The excitation energies of the low-lying levels for ⁶He and ⁹Be nuclei are evaluated. These cluster calculations are based on the configuration-space Faddeev equations. The method of analytical continuation in a coupling constant is used to calculate resonance parameters [1]. Our goal is to show possibility for a reliable description of the ⁶He and ⁹Be within the cluster model using pair local potentials. We focus on the new αn interaction model proposed in [1]. We assume that both, central *p*-wave component and spin-orbital component of αn potential mainly determine the excitation spectra structure of these nuclei. The low-lying spectrum of ⁹Be is well reproduced with this potential. The results for excitation resonance energies of the $\alpha nn(0+,2+,1+)$ systems are presented and compared with the experimental data (http://www.tunl.duke.edu/nucldata/chain/06.shtml) and those from other calculations [2].

 I. Filikhin, V.M. Suslov and B. Vlahovic, Few-Body Systems 50, 255 (2011).
S.N. Ershov, T. Rogde, B.V. Danilin, J.S. Vaagen, I.J. Thompson, F.A. Gareev, Phys. Rev. C 56, 1483 (1997).

¹This work is supported by NSF CREST HRD-0833184 and NASA NNX09AV07A.

Igor Filikhin North Carolina Central University

Date submitted: 06 Jan 2012

Electronic form version 1.4