Abstract Submitted for the APR12 Meeting of The American Physical Society

A_y Measurement from ${}^{3}\text{He}^{\uparrow}(e,e'n)$ Scattering at Jefferson Lab ELENA LONG, Kent State University, JEFFERSON LAB'S HALL A COLLABORATION — Recently A_y asymmetry measurements have been conducted in Jefferson Lab's Hall A through electron scattering from a vertically polarized ${}^{3}\text{He}$ target. Experiment E08-005 measured the target single-spin asymmetry A_y in the quasi-elastic ${}^{3}\text{He}^{\uparrow}(e,e'n)$ reaction. Plane wave impulse approximation (PWIA) predicts that A_y should be exactly zero. A previous experiment at Q² of 0.2 (GeV/c)², where full calculations of Laget and Nagorny indicated A_y to be small, showed a large asymmetry as calculated by the Bochum group using Faddeev calculations to solve the three-body problem exactly. The recent experiment measured this asymmetry at Q² of 0.1 (GeV/c)², 0.5 (GeV/c)² and 1.0 (GeV/c)². This is the first measurement of A_y at large Q², which is another region where A_y is expected to be small. Any non-zero result is an indication of effects beyond simple impulse approximation. This measurement will test the models used to extract neutron form factors from polarized ³He. Details of the measurement will be presented.

Elena Long Kent State University

Date submitted: 09 Jan 2012 Electronic form version 1.4