Studies of the 19O(d, p)20O reaction at RESOLUT

DANIEL SANTIAGO-GONZALEZ, INGO WIEDENHOEVER, L.T. BABY, J. BAKER, S.A. KUVIN, G.V. ROGACHEV, Florida State University, L.E. LINHARDT, J.C. BLACKMON, Louisiana State University — The energetic location of the $d_{3/2}$–orbital in neutron-rich nuclei is of particular interest as it determines the location of the drip-line in the oxygen isotopes. Its behaviour has recently been discussed as a consequence of three-body forces1. Manifestations of such forces are traced through the location of the $d_{3/2}$ orbital, which closer to stability leads to highly excited states. In order to study the location and fragmentation of this orbital in 20O, we performed an experiment at the RESOLUT radioactive beam facility of the Florida State University accelerator laboratory. We produced a beam of the short-lived 19O isotope with an intensity of 1×10^5 pps, 65% purity and 4.11 MeV/u. This beam was used to study the spectroscopic factors of bound and unbound states of 20O using the (d, p) reaction in inverse kinematics and components of the new ANASEN detector array. We will present the methods used and the first results of this experiment regarding the spectroscopic factors of unbound $d_{3/2}$ resonances in 20O.

1T. Otsuka et al., Phys. Rev. Lett 105, 032501 (2010)

Daniel Santiago-Gonzalez
Florida State University

Date submitted: 10 Jan 2012

Electronic form version 1.4