Abstract Submitted for the APR12 Meeting of The American Physical Society

Numerical calculation of neoclassical distribution functions in an axisymmetric torus¹ B.C. LYONS, S.C. JARDIN, PPPL, J.J. RAMOS, MIT PSFC — We solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with complete Landau collision operators. Solubility conditions on the DKEs determine the relevant non-Maxwellian pieces of f (called f_{NM}). We work in a 4D phase space in which ψ defines a flux surface, θ is the poloidal angle, v is the total velocity, and λ is the pitch angle parameter. We expand f_{NM} in finite elements in both v and λ . The Rosenbluth potentials, Φ and Ψ , which define the collision operator, are expanded in Legendre series in $\cos \chi$, where χ is the pitch angle, Fourier series in $\cos \theta$, and finite elements in v. At each ψ , we solve a block tridiagonal system for f_{NMi} (independent of f_e), then solve another block tridiagonal system for f_{NMe} (dependent on f_i). We demonstrate that such a formulation can be accurately and efficiently solved. Results will be benchmarked against other codes (e.g., NEO) and could be used as a kinetic closure for an MHD code (e.g., M3D-C1). Results will also include the lowest-order collisionality correction and the use of generalized Grad-Shafranov equilibria.

¹Supported by the DOE SCGF and DOE Contract # DE-AC02-09CH11466. Based on analytic work by Ramos, PoP 17, 082502 (2010).

Brendan Lyons PPPL

Date submitted: 10 Jan 2012

Electronic form version 1.4