APR13-2013-000201

Abstract for an Invited Paper for the APR13 Meeting of the American Physical Society

$\gamma_v NN^*$ Transition Amplitudes and Excited Baryon Structure from CLAS¹ VICTOR MOKEEV, Jefferson Lab

Studying excited nucleon structure through exclusive-meson electroproduction reactions is key for understanding the nature of the strong interaction in the non-perturbative regime. With its nearly complete coverage of the final-state phase space, the CLAS detector at JLab has provided the lion's share of the world's meson-electroproduction data for differential cross sections and the asymmetries arising from single- and double-polarization observables. Electrocouplings for most of the excited nucleon states (N^*) in mass range of up to 1.8 GeV have been determined from several analyses of the CLAS data for photon virtualities (Q^2) up to 5.0 GeV² for the $\pi^+ n$, $\pi^0 p$, and ηp channels [1,3] as well as for the $\pi^+ \pi^- p$ reaction for $Q^2 < 1.5 \text{ GeV}^2$ [2,3]. Physics analyses of these N^* electrocouplings [2,3] have revealed that the structure of excited nucleon is formed of an internal core of dressed quarks with an external meson-baryon cloud. Our N^* -electrocoupling results afford access to the non-perturbative strong interaction responsible for generating the different N^* states and will also provide testing ground for the inspired by QCD quark model predictions. A dedicated experiment will run after the 12 GeV upgrade to JLab on the extraction of the N^* electrocouplings in the yet unexplored region of high photon virtualities ranging from 5.0 to 12 GeV². The anticipated results are of particular importance in providing a understanding of the nature of confinement and dynamical chiral symmetry breaking in baryons based upon the QCD [3].

- [1] I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
- [2] V.I. Mokeev et al. (CLAS Collaboration), Phys. Rev. C86, 035203 (2012).
- [3] I.G. Aznauryan *et al.*, "Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction," arXiv:1212.4891[nucl-th].

¹Jefferson Lab, 12000 Jefferson Ave, Suite 5, Newport News VA 23606, USA