A Quantum Phase Transition in Hard-Core Bosons on an Opti-
cal Lattice in Three Dimensions1 MATTHEW GAMMILL, Hendrix College,
RICHARD SCALET TAR2, UC Davis, VALY ROUSSEAU, LSU — In recent years,
ultracold atomic gases have provided new experimental realization of the superfluid
phase transition, and experiments where atoms are confined to an optical lattice
— a grid of counter-propagating lasers which generate a standing periodic poten-
tial — allow for excellent control of interaction strength and particle density. The
Bose-Hubbard Model (BHM) describes interacting bosons confined to an optical lat-
tice. Previous work on the hard-core three-dimensional Bose-Hubbard model with
periodic 'checkerboard' potential has demonstrated the existence of a superfluid-
insulator phase transition and established bounds on temperature and superlattice
potential within which these phase transitions may occur. However, a quantitative
phase diagram for this transition was heretofore unestablished. Using a QMC sim-
ulation in tandem with finite-size scaling methods, we locate precise values for the
critical transition points.

1This research funded by the National Science Foundation through its REU program
(NSF award \#1004848).
2primary research supervisor

Matthew Gammill
Hendrix College

Date submitted: 10 Jan 2013
Electronic form version 1.4