Abstract Submitted for the APR13 Meeting of The American Physical Society

A Meson Mass Formula and A Two-Nucleon Potential from a Nonlinear $\lambda \phi^5$ Theory MESGUN SEBHATU¹, Winthrop University — An exact solution of a $\lambda \phi^5$ theory² which is a special case of a class of nonlinear field theories developed by Burt³ is used to construct a propagator that has poles at $M_n = (3n + 1)m_{\pi}$ which is the neutral scalar meson mass formula. The propagator is then used to derive a solitary wave exchange two-nucleon potential ($\lambda \phi^5$ SWEP) in the same manner as the derivation of a $\lambda \phi^4$ SWEP⁴ and SG SWEP⁵. SWEPs have the virtue of describing two-nucleaon interaction with the least number (< 3) parameters. The $\lambda \phi^4$ is of a special interest because it yields a neutral scalar meson mass formula that reasonably agrees with know meson and predicts others that may exist.

¹http://physics.winthrop.edu

²P.B. Burt, Phys. Rev. Lett. 32,1080 (1974)

³P.B. Burt, Quantum Mechanics and Nonlinear Waves, (Harwood 1981)

⁴M.Sebhatu, Nuovo Cimento, 16,463(1976)

 $^5\mathrm{M.Sebhatu},$ Lett. Nuovo Cimento, 16,463(1976)

Mesgun Sebhatu Winthrop University

Date submitted: 10 Jan 2013

Electronic form version 1.4