Abstract Submitted for the APR13 Meeting of The American Physical Society

The Search for a $\pi_1(1400)$ Exotic Meson in the $\gamma p \to \Delta^{++} \eta \pi^-$ System DIANE SCHOTT, The George Washington University, CLAS COLLABORA-TION — Over twenty years ago QCD-inspired models of hadronic states suggested the existence of mesons beyond the Naive Quark Model (NQM), which motivated a rigorous search for exotic mesons. The lightest of these states is the $\pi_1(1400)$ decaying to $\eta \pi^-$ observed by experiment E852 at Brookhaven and the VES collaboration at IHEP. Photoproduction is predicted to favor production of a $J^{PC} = 1^{-+}$ gluonic excitation resulting in the increase of the ratio of π_1 to a_2 mesons. A Partial Wave Analysis was conducted on the reaction $\gamma p \to \Delta^{++} X \to p \pi^+ \pi^-(\eta)$, using the Δ^{++} to select the pion exchange. The analysis has shown the final spectra of the resonance decaying to $\eta \pi^-$ to be dominated by the quantum state of $J^{PC} = 2^{++}$ corresponding to the presence of the $a_2(1320)$. The $J^{PC} = 1^{-+}$ state, shows no structure in the intensity distribution. The phase difference between the $J^{PC} = 1^{-+}$ and $J^{PC} = 2^{++}$ amplitudes show the interference between the two states. This is the first spin-parity analysis of the $\eta \pi$ final state in photoproduction.

> Diane Schott The George Washington University

Date submitted: 10 Jan 2013

Electronic form version 1.4